
In Proc. Fourth Int. Conf. on Collaborative Virtual Environments, ACM (Bonn, Germany, Sept. 2002). 

Security of Runtime Extensible Virtual Environments  
 

Ernesto J. Sallés, James Bret Michael, Michael Capps, Don McGregor, and Andrzej Kapolka 
Naval Postgraduate School, Monterey, California 

{ejsalles, bmichael, mcapps, mcgredo, akapolka} @nps.navy.mil
  
ABSTRACT 
Distributed, real-time virtual environment (VE) architectures have 
traditionally been driven by quality of service (QOS) considera-
tions, with little or no concern paid to security issues.  With recent 
advancements in functionality, computing power and network 
bandwidth it has become practical to use VEs in sensitive areas 
such as product development with proprietary information and 
visualization of classified information.  Consequently, previously 
ignored aspects of security need to be made a primary concern at 
the outset of designing a VE.  In this paper we explore security 
concerns associated with a subtype of VEs:  Runtime Extensible 
VEs (RTEVEs).  We introduce a taxonomy of security issues, 
derived from a case study of NPSNET-V, with the goal of using 
this taxonomy to guide the formulation of security policy, re-
quirements, and architectures for RTEVEs. 

Categories and Subject Descriptors 
K.6.5 [Management of Computing and Information Systems]: 
Security and Protection. 

General Terms:  Security 

Keywords:  computer security, information assurance, virtual 
reality, virtual environment, collaborative environment, runtime 
extensible virtual environment, taxonomy, security. 

1. INTRODUCTION 
Researchers affiliated with the MOVES Institute of the Naval 
Postgraduate School are developing a RTEVE known as 
NPSNET-V [4].  RTEVEs are a subset of VEs and primarily dif-
fer from general VEs in that they can dynamically load new com-
ponents at runtime. Previous versions of NPSNET lacked this 
capability, as they were used to research a variety of other topics 
in networked graphics, such as performance; and, as is often the 
case with research projects, little attention was given to security. 

VEs in general are moving out of the laboratory environment and 
into commercial use, thus necessitating explicit consideration of 
security in all phases of their development.  The dynamic loading 
of code-containing components—the defining aspect of 
RTEVEs—introduces challenging issues related to security.  In 
this paper, we present a taxonomy of security issues associated 
with RTEVEs, using NPSNET-V as the primary basis from which 
to identify and assess security issues. 

(N.B.:  All references to VEs and RTEVEs in this paper are 

strictly in the “visual” context in which participants are interacting 
with other participants in real-time; and their representations are 
depicted visually in a two- or three-dimensional world.) 

1.1 Proliferation of VEs 
Recent advances in computing technology have made it techni-
cally feasible to field near real-time, widely distributed, interac-
tive VEs.  Furthermore, a greater number of organizations are 
beginning to realize what gaming companies and the military have 
known for years:  VEs are more than just research tools; they can 
be used to gain a competitive advantage, generate revenue, or 
reduce operational and developmental costs.  For example, devel-
opment of systems and the training of personnel can be performed 
without placing humans and the real systems in harms way (e.g., 
virtual prototyping and combat flight training).  VE applications 
include multi-user interactive games, training, product prototyp-
ing, entertainment, and decision-making. 

1.2 Need for Security within VEs 
As VEs proliferate, many will be used in contexts in which there 
are incentives for malicious users to misuse such systems for their 
own gain.  Manufacturers may use VEs for virtual prototyping, 
allowing engineers at several locations to make design decisions 
in a collaborative environment in which they are all virtually 
present and observe proprietary information.  In this case, a com-
petitor engaging in industrial espionage might be able to view the 
proprietary information and use it to the competitor’s advantage in 
the marketplace, or modify or destroy the information to mislead 
or disrupt their competitors. 

In a different case, a military commander may utilize a VE to 
visualize the battlefield and all pertinent intelligence information 
during a conflict.  An adversary that is able to exploit weaknesses 
in the VE could inject false information, leading the commander 
into make misinformed decisions, such as mistakenly sending 
troops into an orchestrated ambush.   

1.3 Differing Levels of Security 
VEs vary in the degree of security they require:  this is driven 
primarily by the organization using the VE and the context in 
which the VE will be used, with consideration given to tradeoffs 
such as the cost to develop and maintain the system, system per-
formance, and the risks associated with a violation of security 
policy or breech of trust, assuming such policy and trust relation-
ships have been established.  Some VEs will need high levels of 
security, running on trusted systems with mandatory access con-
trol policies, while others will require minimal-to-medium levels 
of security controls because the risks associated with the misuse 
of these systems is considered to be low. 

An example of a VE application that might require low levels of 
security might be an unclassified technical trainer for tasks such 

 

This paper is authored by employees of the U.S. Government and is in 
the public domain. 
CVE’02, September 30–October 2, 2002, Bonn, Germany. 
ACM 1-58113-489-4/02/0009. 
 



In Proc. Fourth Int. Conf. on Collaborative Virtual Environments, ACM (Bonn, Germany, Sept. 2002). 

as vehicle repair.  A VE intended for use by battlefield command-
ers in formulating strategy and tactics would require higher levels 
of security.  VE applications requiring the highest levels of secu-
rity would be those used as part of national strategic systems (e.g., 
VEs used in support of the Ballistic Missile Defense System). 

Other dimensions of VE security are multilevel security (MLS) 
and compartmentalization.  For instance, a military application of 
a VE could be designed to allow senior commanders to possess 
sensitive intelligence information while denying it to personnel at 
lower levels of the chain–of–command, even though both are 
present in the same area of the virtual environment. 

2. WHAT IS A VIRTUAL ENVIRONMENT? 
According to Singhal and Zyda [21], 

A networked virtual environment is a software system in 
which multiple users interact with each other in real-time, 
even though these users may be located around the world. 

VEs require the ability for participants to communicate and 
“physically” interact within the environment; the feeling of a 
shared space and time are prerequisites. 

In a VE, each user controls one or more entities.  Each entity is 
represented within the VE by a visual model that all other users 
can see and interact with.  The VE delineates the level of realism 
and interaction through its physics-based model foundation and 
rules of interaction that are designed into the system. 

In this section we cover the basics of the design and architecture 
of distributed VEs.  For a detailed discussion of VE architecture 
and design please see [5], [16], and [21]. 

2.1 Characteristics of an Effective VE 
Capps and Stotts [5] list attributes of an effective VE architecture, 
classifying them into the following categories:  network topology, 
interoperability, composability, and rapid evolution.  In 1997, they 
stated that it was difficult to simultaneously address attributes in 
all four categories, and that the then-current examples of VE ar-
chitectures were deficient to some degree in one or more of the 
categories.  This evaluation still holds true today, and may con-
tinue to for many more years to come. 

Network Topology.  A good topology will allow for large, if not 
infinite, scalability in the number of participants in the VE.  If any 
network resource is lost, it will allow for a graceful degradation of 
the simulation.  In addition, it will allow for adequate performance 
for each participant no matter what type of communication capa-
bilities they possess (e.g., T1, ADSL, modem). 

Interoperability.  A good attribute of a VE would be the ability to 
transfer an object to another VE without the loss of information.  
Control of the object must be transferable between different VEs, 
to include the physical properties and behaviors of the object.  If 
an object explodes in one VE after a certain sequence of events, 
then the same object should be able to explode in the other VE. 

Composability.  It should be possible to take two VEs with desir-
able attributes, and compose them into a third VE that maintains 
the unique functionalities of the two parent VEs.  The resulting 

VE would literally be a union of the two original VEs in every 
way, both at start-up and during runtime, without undesirable 
emergent properties. 

Rapid Evolution.  It should be possible to rapidly incorporate new 
technology into a VE with a minimal degree of modification to 
existing components; for example, creating a module with the new 
desired behavior and simply adding the module to the VE. 

To date only the attributes associated with network topology have 
been reasonably well implemented. 

2.2 VE Architectures 
In general, a distributed VE requires copies of a VE application 
residing on a number of workstations connected by a network that 
is used for passing data.  The data that is to be shared may be a 
combination of administrative communications, entity-data up-
dates, and streaming video and audio.  The architecture must al-
low for data sharing and operation within the QOS constraints, as 
described in Section 2.3.  We now turn to a minimal architecture 
for a VE, consisting of four components:  workstation, applica-
tion, database, and network. 

Workstation.  Every VE application must run on a workstation, 
each one equipped for networked multimedia capabilities (e.g., 
network connection, graphics card, and sound card). 

Application.  The application must be able to accurately maintain 
state information for however many entities are present within the 
area of view of the host entity of that application.  It must cor-
rectly maintain each entity’s state, perform the actions triggered 
by input data, and display views of the environment.  It must also 
manage the transmission and reception of data and support com-
munications. 

Database.  The application must have access to a world descrip-
tion database.  This information is used to create the environment 
(e.g., terrain, structures) and every possible object that can exist.  
Ownership and responsibility for this data can be centralized or 
distributed across multiple workstations. 

Network.  The design of the network topology is crucial to the 
workings of the VE.  Numerous architectures and protocols have 
been developed, each with strengths and weaknesses.  A good 
topology is application dependent.  In general, there will be ad-
ministrative processes that require a server-based structure with 
reliable TCP/IP communications.  Likewise, entity-state updates 
that require a constant transmission of data packets between all 
participants might find a multicast protocol useful, despite the 
inherent unreliability of common multicast implementations, since 
occasional dropped packets would likely be quickly outdated by 
more new data.  However, there may be VEs that require reliabil-
ity of all data transmissions, calling for the use of TCP rather than 
multicast. 

2.3 QOS Concerns for VEs 
Here we give an overview of QOS concerns for VEs, with the aim 
of setting the stage for discussing the relationship between secu-
rity and other QOS parameters.  A goal for architecting and de-
signing VEs is to create an environment in which multiple partici-
pants can interact on a near real-time basis; this involves creating 
the illusion of real-time interaction among entities or objects.  The 
generally accepted standard for frame rate (i.e., the rate at which 
entities are updated) within a VE is 30 Hz.  At lower rates the 
human eye begins to notice non-continuous motion; thus entity 
updates are determined at this minimum rate.  However, the up-
date rate can be relaxed when dead-reckoning algorithms are used.  
We note that an essential part of a distributed VE is the data-up-



In Proc. Fourth Int. Conf. on Collaborative Virtual Environments, ACM (Bonn, Germany, Sept. 2002). 

date packet, which conveys the state information for each entity.  
The transfer rate of these packets is directly affected by three net-
working QOS concerns: bandwidth, reliability, and latency and 
delay. 

Bandwidth.  The number of bytes per second of information that 
can be transmitted.  Generally speaking, more entities or higher 
fidelity in a VE requires more bandwidth.   Some VEs include 
interactive audio or streaming video, which add to the bandwidth 
consumption.  Denial-of-service (DOS) attacks have been used 
extensively in many types of distributed systems to reduce the 
amount of available bandwidth and any point in time. 

Reliability.  Ensuring that data is forwarded to the correct destina-
tion with an acceptable packet-loss rate. Network and computer 
survivability have the greatest impact in this area.  Reliability of 
the network is crucial to the sustained performance of the VE, as 
is the packet-loss rate in congested networks. 

Latency/Delay.  Minimization of latency and delay is necessary to 
maintain an acceptable level of synchronization among the par-
ticipants of a VE.  It is difficult to create the illusion of entities 
being in the same state on all machines because of network-based 
latencies:  an acceptable synchronization window must be estab-
lished that will provide the desired level of world-consistency. 

2.4 Special Case: RTEVEs 
Traditional VEs are static; that is, once the VE is running it cannot 
incorporate new types of entities.  To load a new type of entity the 
application must be stopped, the entity added to the environment, 
and the application restarted.  In contrast, a RTEVE permits the 
runtime introduction of new objects and behaviors; this trait is 
essential for a VE that cannot be halted to update the base of ob-
jects and behaviors.  This ability goes beyond just discovering 
objects.   Potentially, any piece of code can be loaded into the VE 
application, including new capabilities for the VE itself.  To date, 
the only visual RTEVEs in existence are hosted within research 
institutions. 

The idea here is that as an application has need for a capability or 
object that it does not possess, it will access a database that con-
tains the necessary data and code modules.  This includes modules 
of executable code that are used to describe model behaviors, 
communication methods, and system capabilities.  This is where 
the true danger of a RTEVE lies.  Any module that may have been 
maliciously modified on one system could easily be propagated or 
distributed to thousands of users. 

3.  SECURITY  
Our discussion of security issues associated with RTEVEs begins 
with a high-level treatment of computer security by discussing 
prior work, then presenting scenarios of possible events that could 
occur within RTEVEs and VEs.  Prior work, like that discussed in 
Section 3.1, identifies issues that transcend systems or address 
specific areas of systems; we prefer to take a system view of 
RTEVE security. 
The five main areas of information assurance—secrecy, integrity, 
availability, non-repudiation, and authentication—are all concerns 
throughout the life cycle of a VE; see Table 1.  For instance, it 
may be necessary for a VE, used by battle commanders for tacti-
cal-level decision-making, to ensure that participants cannot repu-
diate the fact that they injected certain data into the VE.  Simi-
larly, it is necessary to evaluate system design and maintenance 
decisions in terms of their potential affect on preventing malicious 

users of a VE from violating security policies regarding confiden-
tiality or data integrity, masquerading as a legitimate user, or 
launching a distributed DOS attack. 

 
In the setting of security policy and implementation of security 
mechanisms for a VE, consideration should be given to their im-
pact on the QOS concerns previously mentioned.  For example, 
any form of encryption will have some latency effect on the 
transmission of data packets.  Using public-key cryptography for 
state updates would be much more computationally intensive than 
using conventional, single-key cryptography.  However, even 
symmetric-key cryptography will introduce some latency. 

3.1 Security Efforts to Date 
Much research has been conducted on computer security and in-
formation assurance.  However, the complexity of information 
systems such as VEs and the resourcefulness and perseverance of 
rogue users of such systems are constant drivers for conducting 
additional research (e.g., making it more difficult to circumvent 
digital watermarking algorithms).  General network and computer 
security issues that transcend information systems have been 
fairly well researched (vid. [11] and [15]).  Other areas that have 
been researched well have had more of a component focus.  These 
areas include the following:  VE access control (vid. [3] and [19]); 
authentication and integrity using certificates and password sche-
mas; and privacy through the use of symmetric and asymmetric 
encryption.  Research in the area of watermark technology for 
two-dimensional images and three-dimensional models has devel-
oped well and may hold promise for application in other areas of 
data integrity (vid. [1] and [2]). 

One industry that has had to deal with VE security issues has been 
the gaming industry that needs to balance the ability to be avail-
able to anyone, yet still provide protection to the players during 
their gaming experience.  Online VE gaming venues such as 
Ultima and Age of Empires have had to deal with issues such as 
occasional DOS attacks and the more common problem of cheat-
ers/hackers.  Some progress has been made in addressing these 
issues (e.g., vid. [20]). 

As far as the research community goes, it has generally treated the 
security of VEs as an afterthought or of low priority in relation to 
other issues, such as performance and reliability, leaving VEs 
vulnerable to misuse.  Until recently, systems were operated 
within research institutions, where developers and users had com-
plete control of the environment, and shared a common goal of 
openness and information sharing.  Other training venues had 
trusted users with complete control of hardware, software and 
network resources, and very limited access to VE resources by 
untrusted users.  These research and training products were pro-

Areas Description 

Integrity Prevent unauthorized modification of data 

Confidentiality Prevent unauthorized viewing of data 

Availability Ensure data is available for its intended use 
Non-

repudiation 
Ensure that a user cannot refute information 

they placed into the system 
Authentication Ensuring a user/module is who it says it is 

Table 1. Areas of Information Assurance



In Proc. Fourth Int. Conf. on Collaborative Virtual Environments, ACM (Bonn, Germany, Sept. 2002). 

tected via physical security and simple identification and authenti-
cation (I&A) schemes.  One research community that has ad-
dressed security is that of distributed computing, an area that 
shares many similarities with networked VEs.  Particularly nota-
ble are the efforts surrounding GRID computing (e.g., vid. [8], 
[9], and [10]). These efforts have been primarily focused on au-
thentication, access control, integrity, and confidentiality. 

3.2 VE Security-Relevant Scenarios 
Now let us turn to some examples of security-relevant scenarios to 
motivate the remainder of the discussion of security concerns.   
Scenario no. 1: A battlefield commander is using a system that 
displays the area of operations and all intelligence information for 
that area.  If the adversary in a conflict is able to gain access to the 
intelligence information, it could alter its own plans (e.g., move 
weapon assets), possibly determine and silence the source of the 
intelligence, or feed the system with plausible but false informa-
tion (i.e., a form of information operations), with the aim of 
causing legitimate users to make ill-advised decisions.  Alterna-
tively, the adversary might unleash a computer virus or worm to 
deny use of the VE. 
Scenario no. 2:  Suppose an adversary can view the missions that 
opposing forces are training to fly in the near future, as simulated 
in a VE-based pre-mission trainer.  The adversary could then re-
position anti-aircraft platforms along the mission path to neutral-
ize the enemy aircraft.  A clever adversary might inject false ob-
jects into the trainer to confuse the pilot or cause him to attack the 
wrong target when he actually flies the mission.  If the availability 
of the VE is comprised, then the pilots lose the ability to conduct 
visual pre-flights of the mission. 
Scenario no. 3:  Two companies, A and B, are competing to de-
velop the next generation fighter aircraft for the US Navy.  A uses 
a collaborative VE to design its prototype of the aircraft.  If B can 
gain access to A’s VE without being detected, B can observe the 
successes and failures of A’s prototype aircraft, using this to B’s 
advantage in developing its own prototype system. 
Scenario no. 4: Having detailed knowledge of a specific module 
used by a RTEVE, a malicious entity develops a virus that will 
search out that particular module in a database and modify it to 
contain code that will transmit every Entity State Packet Data Unit 
(ESPDU) received by the host application to a listening computer 
controlled by the entity.  The attacker finds some way for the vi-
rus to be placed on the system (e.g., E-mail or an unwitting au-
thorized user installs free software).  The virus is executed and the 
module is modified directly within the database.  A VE is then 
initiated which requires that specific module, and now every in-
stantiation of the module that is downloaded by individual appli-
cations begins to transmit ESPDUs back to the listening computer.  
The rogue entity can observe the transactions taking place within 
the VE. 

4. CASE STUDY: NPSNET-V  
In this section we identify security concerns for RTEVEs, using 
NPSNET-V as a case study.  This section merely provides a brief 
overview of the genesis and current state of NPSNET; please refer 
to [12] for more details.  NPSNET-V is a component framework 
and a set of core components designed for use in the rapid con-
struction of networked VE applications that are dynamically 
configurable and extensible.  In this framework, all functional-
ity—aside from a static kernel common to all applications—is 
provided by a set of loosely coupled modules (from network pro-

tocols to physical models) capable of being loaded and configured 
at runtime. 
NPSNET-V makes use of tools such as Java, XML, and design 
patterns to achieve a number of qualities thought to be essential to 
a platform that is both a test bed for advanced research on VEs 
and a prototype for the next generation of virtual worlds.  The 
characteristics that are sought with this design are the following: 
Scalability (the ability to grow in size and scope), 
Persistence (the ability for a VE to maintain a current state even 

when no participants are present), 
Portability (the ability to run on a wide range of computing 

platforms), 
Distribution (not rely on a single shared server or server 

hierarchy), 
Dynamic extensibility (seamless introduction of new functionality 

and new classes of entities), 
Interoperability (compatibility with present and future software 

systems), and 
Composability (ability to build complex worlds from libraries of 

predefined reusable components). 

4.1 Genesis of NPSNET-V 
Bamboo [24] is similar to NPSNET-V in that Bamboo applica-
tions begin with a tiny microkernel, responsible for basic system 
management; the applications acquire all further functionality by 
loading discrete modules, or plug-ins, and connecting them to 
form a unified hierarchy of interdependent components.  Applica-
tions can be extended by the user or triggered by an internally or 
externally generated event.  
Like Bamboo, the Java Adaptive Dynamic Environment (JADE) 
is a microkernel-based component framework for RTEVEs [17].  
JADE takes advantage of the Java environment to provide cross-
platform support without recompilation.  In JADE, networking is 
performed via the TreacleWell framework [18], in which network 
data structure and flow is controlled by the composition of dis-
crete modules, each playing a clearly defined role in the forma-
tion, transmission, reception, and interpretation of information 
transmitted over the network. 
Entirely textual, LambdaMOO and other MOOs are the only 
RTEVEs open to the public and in constant use supporting per-
sistent virtual worlds.  MOO stands for MUD, Object-Oriented; 
MUD stands for Multi-User Dungeon.  Developed at Xerox 
PARC, it was used in early social virtual reality experiments [6].  
Almost a decade later, it still hosts a thriving online community 
[14].  Participants use a simple terminal application and connect 
to a central server in which all processing occurs; all persistent 
state is stored within the server’s database.  Users may extend the 
world by adding rooms or simple objects, or they may use a spe-
cialized, prototype-based scripting language to create more ad-
vanced entities and behaviors.  Users can extend pre-existing ob-
jects to create new objects and then add new behavior commands 
that other users can then use to interact with the new object. An-
other user may choose to extend this object once more, or simply 
clone the object to create another instance.  The result, after this 
extension process continues for many generations, is a massive 
and diverse hierarchy of objects. 



In Proc. Fourth Int. Conf. on Collaborative Virtual Environments, ACM (Bonn, Germany, Sept. 2002). 

Figure 1. Example containment diagram. 
 

4.2 NPSNET-V Architecture 
4.2.1 Application Structure 
NPSNET-V’s component framework was inspired by XML: like 
XML elements, NPSNET-V components are arranged in a hierar-
chy, with component relationships established implicitly by their 
relative locations within the hierarchy.  An XML configuration 
system is an integral part of the architecture, allowing developers 
to combine components into functioning VE applications.  The 
XML configuration file for the target VE application is retrieved 
from a lightweight directory access protocol (LDAP) persistence 
storage server. The file is a template the application uses to build 
its internal component structure; afterward the application 
downloads the needed modules. 
NPSNET-V applications are organized using the Model-View-
Controller pattern [13], which requires that the state model of an 
entity be kept separate from the representations presented to the 
user and the interfaces used to manipulate the model.  In 
NPSNET-V, models are typically entities within the virtual world; 
views are modules that provide a graphical, textual, or auditory 
representation of their target entities; and controllers are modules 
that manipulate entity state in response to user input or network 
updates.  Application layout is largely determined by functional 
grouping, as shown in Figure 1. 

In Figure 1, the white boxes indicate modules, with the shaded 
regions being their contents.  In this example, the application 
contains one entity, one view core, and one protocol.  The view 
core contains a VRML view module and a controller module that 
allows the user to manipulate the entity’s transform using a 
mouse.  The Distributed Interactive Simulation (DIS) protocol 
module, responsible for transmitting entity state over the network, 
contains a single multicast channel module which receives all 
packets generated by its containing protocol. 
As the application has need to “discover” new modules or entities, 
it will communicate with the LDAP server and retrieve a URL 
that points to the desired module.  It then contacts the appropriate 
HTTP server and downloads the module, assimilating it into its 
internal structure.  This provides the runtime extensibility of 
NPSNET-V. 

4.2.2 Database Structure 
The database architecture is divided into two groups:  persistent 
storage and custom servers.  Messages exchanged between peers, 
particularly those associated with the Dynamic Behavior Protocol 
(DBH), may cause the receiving protocol module to extend the 
application hierarchy by loading and activating new modules.  For 
instance, receiving a message addressed to an entity that does not 
yet exist on the host system will cause a representation of that en-
tity to be loaded.  These representations must be easily accessible 
by all of the participants of a virtual world. 
NPSNET-V uses LDAP and HTTP servers to provide this func-
tionality.  The LDAP service, which may be distributed among 
multiple LDAP servers, provides a unified namespace for virtual-
world components.  Each entry in the directory contains an XML 
configuration that represents a serialized part of the VE applica-
tion; the URLs for the necessary application modules are in-
cluded. 
In general, these modules are stored within Java archives (jars) 
along with extended meta data concerning their contents and 
made accessible via the HTTP servers.  The component frame-
work downloads and caches these jars as necessary to provide the 
resources required by hosted applications. 
In some cases, HTTP access is not appropriate, and specialized 
protocols must be used.  For instance, an example application uses 
a custom interface to download elevation data from a specialized 
terrain server.  In addition, streaming video and audio require their 
own custom interface. 

4.2.3 Network Structure 
Figure 2 depicts an example of the network connections that may 
be formed during a typical session.  The dotted lines indicate un-
reliable multicast channels used to transfer entity state updates 
and interactions between peers.  Solid lines represent the transient 

reliable connections used to download resources from the World 
Wide Web, to store and retrieve configuration data from the 
LDAP service, and to access custom servers. 
Three types of communication flow through this network, one 
being administrative communication, such as retrieving configu-
ration files and URLs, generally requiring reliable TCP or multi-
cast connections.  A second type of flow is that of peer-to-peer, 
packet-based state updates and interactions transmitted over IP 
multicast, the principle mode of communication between individ-
ual applications.  In the simplest case, one multicast channel may 
be used for all network traffic within a world, an impractical ap-
proach for worlds with many participants.  Area-of-interest (AOI) 
management is used to distribute traffic among many multicast 
channels according to specified criteria.  A third type of flow, 

Figure 2. Overview of network 
i



In Proc. Fourth Int. Conf. on Collaborative Virtual Environments, ACM (Bonn, Germany, Sept. 2002). 

module/resource communication, requires reliable TCP/UDP 
connections. These flows include passing of module code, terrain 
data, and streaming video and audio from HTTP and custom serv-
ers. 

4.3 Taxonomy of RTEVE Security Issues 
Here we develop the beginnings of a taxonomy of security issues 
by grouping the concerns into the following categories:  integrity, 
confidentiality, availability, non-repudiation, and authentication; 
see Table 1.  (N.B.:  This article does not cover the attacks that 
may be possible on the workstation itself, or attacks on the 
TCP/IP stack.  These subjects are outside the scope of this paper, 
but have been extensively studied by others.) 

4.3.1 Integrity 
There are a number of possible attacks on the integrity of the 
RTEVE system, many of them particularly dangerous because 
information that has traditionally been kept locally on systems 
presumed to be secure may be loaded across the network, where it 
is vulnerable to interception and modification. These can be di-
vided into attacks on configuration files, components, data com-
munications, the database, and temporal integrity. 
In NPSNET-V, it will be necessary to protect XML configuration 
files from unauthorized modification by users who want to direct 
an application to add in a module containing malicious code. 
Since the RTEVE application itself could be modified by loading 
new components at runtime, a Trojan horse could be substituted 
for a legitimate component in transmission, resulting in compro-
mised data or modified behavior of the RTEVE. The components 
added to the virtual world (as opposed to the RTEVE administra-
tive framework) are likewise potential targets of worms or Trojan 
horses. 
Once the components have been loaded, they can communicate 
with each other. This presents another avenue for an attacker. The 
communications can be subverted, perhaps to supply false but 
plausible entity state data that confuse or deceive others in the 
virtual world. Data might also be modified in targeted ways to 
cause the VE to reveal information in an unintended way, or to 
cause a system crash, or to execute a buffer overflow attack. In 
general, the class of communications attacks is very similar to 
those that current, non-RTEVEs face. 
In addition, components could be subverted while in the database. 
An attacker could replace legitimate components with malicious 
ones, and then wait for an unsuspecting user to load them.  In 
older, static VEs this information was often distributed in a secure 
manner (at least conceptually) before the application started and 
kept on a presumed secure local machine. A Quake user, for ex-
ample, has a database of levels, textures, entities, code, etc.; he 
would receive and load this data from a CD onto the hard disk of 
his workstation. The application would be as secure as it was 
originally distributed.  Now, if a malicious user was able to break 
into a server that contained an update to the application, and re-
place the update with one that contained say a virus or worm; then 
as users downloaded the update, they in reality would be 
downloading a Trojan horse, and their application would no 
longer be secure, in fact it would now be subverted with whatever 
payload the Trojan horse contained.  With a RTEVE, this scenario 
could occur at any time during runtime.  A user could begin with a 
pristine, secure copy of the application, but then if a malicious 
module were to be assimilated, the application would be compro-
mised.  Depending on the nature of the malicious code, the user’s 

application/workstation would be attacked, or used in an attack 
such as a DOS attack. 
Moreover, the Network Time Protocol (NTP) synchronization 
information provided by the NTP subsystem could be modified to 
disrupt the synchronization of the participants in a RTEVE, re-
ducing or preventing the usability of the VE for interactions. The 
distortion of temporal data can be used to reorder events, perhaps 
allowing an “effect” to occur before a “cause.” 

4.3.2 Confidentiality 
Although NPSNET-V is a research prototype, it is intended to be 
a blueprint for RTEVEs used by organizations, such as the U.S. 
Army, which have policies that govern the protection of sensitive 
information.  Within this context, it will be necessary to maintain 
secrecy of information on both the network and individual work-
stations.  Likewise, it will need an access control mechanism to 
ensure that only authorized participants can access data and 
computing resources.  The RTEVE also needs to protect applica-
tion code on a workstation from being surreptitiously acquired; 
such acquired code could be used in developing future attacks or 
modified malicious copies that are then substituted for the origi-
nals. 
Information can be gleaned by the analysis of traffic flowing 
across the network.  Depending on the purpose of the application 
and current state of affairs, an increase in data transmission can 
signal preparations for a military action or reveal relationships 
between units.  Even if the data is not readable, an attacker can 
determine which participants are most active or most informed 
and use that information to target the resources being used by 
those participants. 

4.3.3 Availability 
The availability of a RTEVE could be of great importance to an 
organization that is using the system to complete a time-critical 
task such as a rehearsal for an air strike.  RTEVEs are distributed 
by their very nature and are thus potential targets of malicious 
users who initiate distributed DOS attacks:  this includes any type 
of network or computer attack designed to reduce or eliminate the 
usability of a RTEVE, such as packet saturation of the commu-
nication paths or introduction of code designed to shut down one 
or more applications.   Focused DOS attacks could be directed 
toward physical components of the RTEVE, such as data links or 
workstations. 

4.3.4 Non-Repudiation 
Returning to an example we presented is Section 3, a commander 
that monitors a battle space through a RTEVE must be able to 
positively identify the source of data which he uses to make a 
decision.  If he gives the order to launch missiles on what the sys-
tem shows is a hostile aircraft, but in reality is a passenger jetliner, 
the source of the information must be traceable and must not be 
able to repudiate its introduction of the misinformation. 

4.3.5 Authentication 
A malicious entity could use methods such as IP hijacking or 
spoofing to enter into the RTEVE and observe and interact with 
participants.  There is also the possibility that a malicious entity 
possesses a copy of the application and is able to be accepted as 
an authorized participant.  NPSNET-V will need to be able to 
authenticate users across a distributed computing environment, 
necessitating for example, the incorporation of a public-key infra-
structure (PKI) into the architecture. 



In Proc. Fourth Int. Conf. on Collaborative Virtual Environments, ACM (Bonn, Germany, Sept. 2002). 

4.4 Information Assurance 
The foregoing taxonomy, although incomplete, is a starting point 
for both building a more inclusive taxonomy and making sure that 
major areas of concern regarding information assurance are con-
sidered when developing or maintaining RTEVEs.   In some cases 
there are two or more ways of addressing a security concern:  the 
decision of which alternative to use can be driven by the results of 
performing a systematic assessment of the security policy and 
requirements of the RTEVE.  As part of the information assurance 
activities, a risk assessment of the RTEVE would need to be con-
ducted:  vulnerabilities are not a concern unless there is a threat 
associated with the vulnerabilities, and the likelihood and magni-
tude of the loss is likely to exceed the threshold set by a user or 
owner of the RTEVE.  There needs to be some level of agreement 
among participants in a RTEVE about the acceptable threshold. 
When formulating security policy for a RTEVE, the developer 
must balance the security measures needed to enforce such policy 
with other requirements, such as QOS.  For example, addressing 
non-repudiation of data-update packets by using certificates could 
make it difficult to satisfy a guarantee that a delay in transmission 
will not exceed an agreed on threshold value, preventing the ef-
fective use of the VE in a real-time context. 
Information assurance activities would need to be performed 
throughout the life cycle of the RTEVE:  the system is non-sta-
tionary in that components are continually being added and re-
moved from the system, and it could be used in a wide spectrum 
of operational contexts, from those that have very minimal secu-
rity requirements to those in which the compromise of the RTEVE 
could contribute to the demise of an organization or even have an 
adverse affect on national security. 

4.5 Status of NPSNET-V Security 
NPSNET-V is a Java-based application with no security beyond 
the default provided by the Java Virtual Machine (JVM).  We are 
developing security policy and requirements for NPSNET-V us-
ing, as a guide, both the architectural framework described in 
Section 4.2 and the taxonomy presented in Section 4.3.  The goal 
is to provide adequate security with minimal reduction in the 
flexibility of the architecture. 

4.5.1 General 
An easy assumption upon which to construct networked applica-
tions is that any security concern can generally be resolved via 
existing computer, network and database security mechanisms.  
This assumption requires that the VE be hosted on a secure net-
work.  For an application such as NPSNET-V, whose goal is to be 
as flexible as possible, this assumption cannot be accepted, nor the 
assumption that any system it resides on will have computer and 
database security measures already in place; not to mention that 
the application must be able to bridge both secure and non-secure 
networks.  Therefore, the desired security level of the application 
must be ensured by the application itself.  If the application were 
on an untrusted system, then it would at least be protected to the 
extent that is inherent in the application itself; if, on the other 
hand, the application is on a secure system, then the application is 
that much more protected. 
The GRID security infrastructure mentioned in Section 3.1 has 
merit for possible use with a RTEVE.  The application would 
need to be designed to work on a GRID infrastructure, or the 
GRID infrastructure would need to be modified to work with the 
application.  The GRID infrastructure already takes into account 

authentication, access control, confidentiality, and integrity.  We 
suggest, however, that the integrity model used (i.e., certificates) 
is insufficient if the data is maliciously modified prior to commu-
nication (e.g., by a Trojan horse or direct modification).  In the 
case of transferring executable code to possibly thousands of par-
ticipants, it is essential that a malicious modification be identified, 
no matter when it occurred. 

4.5.2 Current Ideas 
Current ideas revolve around the creation of a Distributed Secu-
rity Manager (DSM) that is based on complementing layers, 
similar to that discussed in [7].  The DSM would mange security 
strictly within the application.  Identified layers for NPSNET-V 
are: encryption, I&A, and intrusion/misuse detection. 
Encryption.  Use of PKI and conventional keys through the Java 
Secure Socket Layer (SSL) to maintain encryption of data within 
the network.  The DSM should manage the dynamic redistribution 
of keys in response to breaches of security. 
I&A.  Used to ensure the legitimacy of connecting applications.  
Most likely the implementation will require the use of PKI certifi-
cates to verify identity. 
Intrusion/Misuse Detection.   There must be some way to identify 
compromised modules and the presence of malicious us-
ers/observers, as well as simple and complex/distributed network 
attacks.  Current design ideas are based on research into both sig-
nature- and anomaly-based network intrusion detection systems 
(IDS) such as [7], [22] and, [23].  Our thoughts include the use of 
hashing signatures, or perhaps even some form of component 
watermarking, as a way to identify modified modules, and audit 
logs to identify malicious activity. 
We envision the DSM to have a distributed nature with some form 
of security module in each application that communicates with 
either several “senior” security modules that provide high-level 
oversight, or each other for cooperative oversight.  The main ideas 
here are to both avoid a single point of failure and allow for sys-
tem robustness in case some security modules are compromised.  
The DSM should also be designed to avoid its use as an unwitting 
vehicle for DOS attacks.  This could occur if an attacker continu-
ously performs a simple action that causes the DSM to keep re-
distributing cryptography keys, thus causing the VE to halt as 
keys are continually changing. 
The realization of the DSM will likely require modifications to be 
made to the current NPSNET-V architecture and the initial taxon-
omy of security concerns presented in the article. 

5. CONCLUSION  
The complexity and size of RTEVEs opens them to a wide spec-
trum of security vulnerabilities, in addition to those found in any 
interactive distributed application.  As RTEVEs make their way 
outside the laboratory and into mainstream usage, additional secu-
rity-related vulnerabilities will arise.  At present, the authors of 
this paper are exploring the use of combination of existing and 
novel information assurance techniques to eliminate or mitigate 
the effects of such vulnerabilities. 

6. ACKNOWLEDGEMENTS  
We thank Don Brutzman for his comments on earlier drafts of this 
article.  The views and conclusions contained herein are those of 
the authors and should not be interpreted as necessarily 
representing the official policies or endorsements, either ex-
pressed or implied, of the U.S. Government. 



In Proc. Fourth Int. Conf. on Collaborative Virtual Environments, ACM (Bonn, Germany, Sept. 2002). 

7. REFERENCES 
[1] Benedens, O. Geometry-based watermarking of 3D models. 

IEEE Computer Graphics and Applications, 19, 1 (Jan./Feb. 
1999), 46-55. 

[2] Berghel, H. Watermarking Cyberspace. Comm. ACM, 40, 11 
(Nov. 1997), 19-24. 

[3] Bullock, A. and Benford, S. An access control framework for 
multi-user collaborative environments. In Proc. Int. SIG-
GROUP Conf. Supporting Group Work, ACM (Phoenix, 
Ariz., Nov. 1999), 140-149. 

[4] Capps,  M., McGregor, D., Brutzman, D., and Zyda, M. 
NPSNET-V: A New beginning for dynamically extensible 
virtual environments. IEEE Computer Graphics and Appli-
cations 20, 5 (Oct. 2000), 12-15. 

[5] Capps, M. and Stotts, D. Research issues in developing 
networked virtual realities: Working group report on distrib-
uted system aspects of sharing a virtual reality. In Proc. Sixth 
Workshop Enabling Technologies: Infrastructure for Col-
laborative Enterprises, IEEE (Cambridge, Mass., June 
1997), 205-211. 

[6] Curtis, P. and Nichols, D.  MUDs grow up:  Social virtual 
reality in the real world. In Digest of Papers for COMPCON, 
IEEE (San Francisco, Calif., Feb. 1994), 193-200. 

[7] Forrest, S., Hofmeyr, S., and Somayaji, A. Computer immu-
nology. Comm. ACM 40, 3 (Oct. 97), 88-96. 

[8] Foster, I., Karonis, T., and Kesselman, C. Managing security 
in high-performance distributed computations. Cluster Com-
puting 1, 1 (1998), 95-107. 

[9] Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. A secu-
rity architecture for computational grids. In Proc. Fifth Conf. 
Computer and Communications Security. ACM (San 
Francisco, Calif., Nov. 1998), 83-92. 

[10] Foster, I., Kesselman, C., and Tuecke, S. The anatomy of the 
grid: enabling scalable virtual organizations. Int. J. Super-
computer Applications 15, 3 (Fall 2001), 200-222. 

[11] Jayaram, N. D. and Morse, P. L. R.  Network security:  A 
taxonomic view.  In European Conf. Sec. and Detection, 
IEEE (London, Apr. 1997), 124-127. 

[12] Kapolka, A., McGregor, D., and Capps, M. A unified 
component framework for dynamically extensible virtual en-

vironments. In Proc. Fourth Int. Conf. Collaborative Virtual 
Environments, ACM (Bonn, Germany, Sept. 2002). 

[13] Krasner,G., and Pope, S. A cookbook for using the model-
view-controller user interface paradigm in smalltalk-80. J. 
Object-Oriented Prog. 1, 3 (Aug./Sep. 1988), 26-41.  

[14] LambdaMOO. <telnet://lambda.moo.mud.org:8888> 

[15] Landwehr, C. E., Bull A., McDermott, J., and Choi, W. A 
taxonomy of computer program security flaws. ACM Com-
put. Surveys 26, 3 (Sept. 1994), 211-254. 

[16] Macedonia, M. R. and Zyda, M. J. A taxonomy for net-
worked virtual environments.  IEEE Multimedia 4, 2 
(Jan./Mar. 1997), 48-56. 

[17] Oliveira, M., Crowcroft, J., and Slater, M. Component framework 
infrastructure for virtual environments. In Proc. Third Int. Conf. 
Collaborative Virtual Environments, ACM (San Francisco, Calif., 
Sept. 2000), 139-146. 

[18] Oliveira, M., Crowcroft, J., Brutzman, D., and Slater, M. 
Components for distributed virtual environments. In Proc. 
Symposium Virtual Reality Softw. and Technol., ACM 
(London, Dec. 1999), 176-177. 

[19] Pettifer, S. and Marsh, J.  Collaborative access model for shared 
virtual environments.  In Proc. Tenth Int. Workshops Enabling 
Technologies:  Infrastructure for Collaborative Enterprises, 
IEEE (Cambridge, Mass, June 2001), 257-262. 

[20] Pritchard, M. How to hurt the hackers: the inside scoop on 
internet cheating and how you can combat it. Game Devel-
oper 7, 6 (June 2000), 28-40. 

[21] Singhal, S. and Zyda, M.  Networked Virtual Environments:  
Design and Implementation.  ACM Press-SIGGRAPH Se-
ries, New York, 1999. 

[22] Stillerman, M., Marceau, C., and Stillman, M. Intrusion 
detection for distributed applications. Comm. ACM 42, 7 
(July 1999), 62-69. 

[23] Vigna, G. and Kemmerer, R. NetStat: A network-based intrusion 
detection approach.  In Proc. Fourteenth Annual Computer Sec. 
Application Conf., ACM (Scottsdale, Ariz., Dec. 1998), 25-34. 

[24] Watsen, K. and Zyda, M.  Bamboo:  A portable system for 
dynamically extensible, real-time, networked, virtual environ-
ments.  In Proc. Virtual Reality Annual Int. Symposium, IEEE 
(Atlanta, Ga., Mar. 1998), 252-259. 

 


